1036.Proposed by George Apostolopoulos, Messolonghi, Greece.

Let a, b, c be positive real numbers such that $a b c=1$. Prove that

$$
\left(a^{3}(a+1)+b^{3}(b+1)+c^{3}(c+1)\right) \cdot \frac{\left(a^{3}+3\right)\left(b^{3}+3\right)\left(c^{3}+3\right)}{(a+1)(b+1)(c+1)} \geq 48
$$

Solution by Arkady Alt, San Jose ,California, USA.

Note that for any positive x holds inequality
(1) $\frac{x^{3}+3}{x+1} \geq \frac{x+3}{2}$.

Indeed, $(1) \Leftrightarrow 2\left(x^{3}+3\right)-(x+1)(x+3) \geq 0 \Leftrightarrow(2 x+3)(x-1)^{2} \geq 0$.
Since $\frac{\left(a^{3}+3\right)\left(b^{3}+3\right)\left(c^{3}+3\right)}{(a+1)(b+1)(c+1)} \geq \frac{(a+3)(b+3)(c+3)}{8}$ remains to prove inequality

$$
\begin{equation*}
\sum_{c y c} a^{3}(a+1) \cdot \prod_{c y c} \frac{a+3}{2} \geq 48 . \tag{2}
\end{equation*}
$$

By AM-GM we have $\sum_{c y c} a^{3}(a+1)=\sum_{c y c} a^{4}+\sum_{c y c} a^{3} \geq 3 \sqrt[3]{a^{4} b^{4} c^{4}}+3 \sqrt[3]{a^{3} b^{3} c^{3}}=6$
and $\prod_{c y c} \frac{a+3}{2}=\frac{1}{8} \prod_{c y c}(a+3) \geq \frac{1}{8} \prod_{c y c} 4 \sqrt[4]{a \cdot 1 \cdot 1 \cdot 1}=8 \sqrt[4]{a b c}=8$.
Hence, $\sum_{c y c} a^{3}(a+1) \cdot \prod_{c y c} \frac{a+3}{2} \geq 6 \cdot 8=48$.
1037.Proposed by George Apostolopoulos, Messolonghi, Greece.

Let P be a point inside the triangle $A B C$ and let D, E, F be the projections of P on the sides $B C, C A$, and $A B$, respectively. Prove that

$$
\frac{P A+P B+P C}{(E F \cdot F D \cdot D E)^{1 / 3}} \geq 2 \sqrt{3}
$$

Solution by Arkady Alt, San Jose ,California, USA.

Let $R_{a}:=P A, R_{b}:=P B, R_{c}:=P C$ and $a_{p}:=E F, b_{p}:=F D, c_{p}:=D E$
(that is a_{p}, b_{p}, c_{p} are sidelengths of pedal triangle of point P). Then original inequality in the new notation becomes

$$
\begin{equation*}
\frac{R_{a}+R_{b}+R_{c}}{\left(a_{p} b_{p} c_{p}\right)^{1 / 3}} \geq 2 \sqrt{3} \tag{1}
\end{equation*}
$$

Since quadrilateral $F A E P$ is cyclic (because $P F \perp A B$ and $P E \perp A C$) and R_{a} is diameter of circumcircle of quadrilateral $F A E P$
then $\frac{a_{p}}{R_{a}}=\sin A=\frac{a}{2 R}$ and, similarly, $\frac{b_{p}}{R_{b}}=\sin B=\frac{b}{2 R}, \frac{c_{p}}{R_{c}}=\sin C=\frac{c}{2 R}$ and inequality
can be rewritten as $\frac{R_{a}+R_{b}+R_{c}}{\left(\frac{a R_{a}}{2 R} \cdot \frac{b R_{b}}{2 R} \cdot \frac{c R_{c}}{2 R}\right)^{1 / 3}} \geq 2 \sqrt{3} \Leftrightarrow \frac{2 R\left(R_{a}+R_{b}+R_{c}\right)}{\left(a R_{a} \cdot b R_{b} \cdot c R_{c}\right)^{1 / 3}} \geq 2 \sqrt{3} \Leftrightarrow$
$\frac{R\left(R_{a}+R_{b}+R_{c}\right)}{\sqrt[3]{R_{a} R_{b} R_{c}}} \geq \sqrt{3} \sqrt[3]{a b c} \Leftrightarrow \sum_{c y c} \sqrt[3]{\frac{R_{a}^{2}}{R_{b} R_{c}}} \geq \frac{\sqrt{3}}{R} \sqrt[3]{a b c}$ or $\sum_{c y c} \sqrt[3]{\frac{R_{a}^{2}}{R_{b} R_{c}}} \geq \sqrt{3} \sqrt[3]{\frac{s r}{R^{2}}}$.
Or, inequality (1) can be rewritten as $\frac{R_{a}+R_{b}+R_{c}}{\left(R_{a} \sin A \cdot R_{b} \sin B \cdot R_{c} \sin C\right)^{1 / 3}} \geq 2 \sqrt{3} \Leftrightarrow$
$\frac{R_{a}+R_{b}+R_{c}}{\left(R_{a} R_{b} R_{c}\right)^{1 / 3}} \geq 2 \sqrt{3}(\sin A \sin B \cdot \sin C)^{1 / 3}$.

Since $\frac{R_{a}+R_{b}+R_{c}}{\left(R_{a} R_{b} R_{c}\right)^{1 / 3}} \geq 3$ suffice to prove that $3 \geq 2 \sqrt{3}(\sin A \sin B \cdot \sin C)^{1 / 3} \Leftrightarrow$ $\frac{\sqrt{3}}{2} \geq(\sin A \sin B \cdot \sin C)^{1 / 3}$.
We have $\frac{\sin A+\sin B+\sin C}{3} \leq \frac{\sqrt{3}}{2}$ (because for $\sin x$ which is concave down on $[0, \pi]$ by Jensen's Inequality holds $\frac{\sin A+\sin B+\sin C}{3} \leq \sin \frac{A+B+C}{3}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$) and by AM-GM $(\sin A \sin B \cdot \sin C)^{1 / 3} \leq \frac{\sin A+\sin B+\sin C}{3}$.
(Another way to prove inequality $\sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}$.
First note that for any $x, y \in[0, \pi]$ holds inequality $\sin x+\sin y \leq 2 \sin \frac{x+y}{2}$. Indeed, $\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \leq 2 \sin \frac{x+y}{2}$ because $\frac{x+y}{2} \in[0, \pi]$ and $\frac{x-y}{2} \in[-\pi / 2, \pi / 2]$.
Using inequality $\sin x+\sin y \leq 2 \sin \frac{x+y}{2}$ we obtain

$$
\begin{aligned}
& \sin A+\sin B+\sin C+\sin \frac{\pi}{3} \leq 2 \sin \frac{A+B}{2}+2 \sin \frac{C+\frac{\pi}{3}}{2} \leq 4 \sin \frac{\frac{A+B}{2}+\frac{C+\frac{\pi}{3}}{2}}{2}= \\
& \left.4 \sin \frac{\pi+\frac{\pi}{3}}{4}=4 \cdot \sin \frac{\pi}{3}=2 \sqrt{3} \Rightarrow \sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}\right)
\end{aligned}
$$

1038.Proposed by D. M. Bătinetu̧-Giurgiu, Matei Basarab National College, Bucharest,

Romania and Neculai Stanciu, George Emil Palade Secondary School, Buzău, Romania.
Let m be a nonnegative real number and x, y be positive real numbers. Prove that, for any triangle $A B C$ with side lengths a, b, c where $[A B C]$ denotes the area of triangle,

$$
\frac{a^{m+2}}{(x b+y c)^{m}}+\frac{b^{m+2}}{(x c+y a)^{m}}+\frac{c^{m+2}}{(x a+y b)^{m}} \geq \frac{4 \sqrt{3}}{(x+y)^{m}} \cdot[A B C] .
$$

Solution by Arkady Alt, San Jose ,California, USA.

Let $u:=\frac{x b+y c}{x+y}, v:=\frac{x c+y a}{x+y}, w:=\frac{x a+y b}{x+y}$ and $I_{m}:=\frac{a^{m+2}}{u^{m}}+\frac{b^{m+2}}{v^{m}}+\frac{c^{m+2}}{w^{m}}$
then $\sum_{c y c} \frac{a^{m+2}}{(x b+y c)^{m}} \geq \frac{4 \sqrt{3}}{(x+y)^{m}} \cdot[A B C] \Leftrightarrow I_{m} \geq 4 \sqrt{3} \cdot[A B C]$.
We will prove that $I_{m+1} \geq I_{m}$ for any $m \in \mathbb{N} \cup\{0\}$.
Noting that $I_{0}=a^{2}+b^{2}+c^{2}$ and using inequality $\frac{\alpha^{2}}{\beta} \geq 2 \alpha-\beta, \alpha, \beta>0$ we obtain
$I_{1}=\sum_{c y c} \frac{a^{3}}{u}=\sum_{c y c} a \cdot \frac{a^{2}}{u} \geq \sum_{c y c} a(2 a-u)=I_{0}+\sum_{c y c} a(a-u)=$
$I_{0}+\sum_{c y c}\left(a^{2}-\frac{a(x b+y c)}{x+y}\right)=I_{0}+a^{2}+b^{2}+c^{2}-\sum_{c y c} \frac{a(x b+y c)}{x+y}=$
$I_{0}+\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \geq I_{0}$.
Taking inequality $I_{1} \geq I_{0}$ as base of Math Induction and assuming for any $m \in \mathbb{N}$
that $I_{m} \geq I_{m-1}$ we will prove that $I_{m+1} \geq I_{m}$.
We have $I_{m+1}=\sum_{c y c} \frac{a^{m+3}}{u^{m+1}}=\sum_{c y c} \frac{a^{m+1}}{u^{m}} \cdot \frac{a^{2}}{u} \geq \sum_{c y c} \frac{a^{m+1}}{u^{m}}(2 a-u)=I_{m}+\sum_{c y c}\left(\frac{a^{m+2}}{u^{m}}-\frac{a^{m+1}}{u^{m-1}}\right)=$ $I_{m}+\left(I_{m}-I_{m-1}\right) \geq I_{m}$.
Since $\left(I_{m}\right)_{m \geq 0}$ is increasing sequence then $I_{m} \geq I_{0}=a^{2}+b^{2}+c^{2}$ and
(1) $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} \cdot[A B C]$ (Weitzenböck's inequality)
we obtain $I_{m} \geq 4 \sqrt{3} \cdot[A B C]$.
(Or, direct proof of inequality $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} \cdot[A B C]$:
Let $x:=s-a, y:=s-b, z:=s-c$ where s is semiperimeter and let $p:=x y+y z+z x$, $q:=x y z$. Also, assume (due to homogeneity) that $s:=1$. Then $a^{2}+b^{2}+c^{2}=2(1-p)$, $[A B C]=\sqrt{q}$ and inequality (1) become $1-p \geq 2 \sqrt{3} \cdot \sqrt{q}$.
Since $p^{2}=(x y+y z+z x)^{2} \geq 3 x y z(x+y+z)=3 q$ and
$1=(x+y+z)^{2} \geq 3(x y+y z+z x)=p$
we obtain $1-p-2 \sqrt{3} \cdot \sqrt{q}=1-3 p+2(p-\sqrt{3 q}) \geq 0)$.

